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Motivation:
Completing Knowledge Bases

• Cross-Domain Knowledge Bases like DBpedia, Wikidata, or the Google 
Knowledge Graph are used as background knowledge for tasks such as: 
– Web search

– Natural language processing

– Data integration and mining

– Question answering

• Knowledge bases are more useful the more complete they are.

• Cross-domain knowledge bases, e.g. DBpedia, are often derived from 
Wikipedia and thus do not contain long-tail entities not covered by 
Wikipedia
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Motivation:
Potential Usefulness of Web Tables for 
Knowledge Base Augmentation

Web Table: a relational HTML table extracted form the Web.

Web tables have been show to have high potential in constructing or completing knowledge bases 
[Cafarella et al. 2008], [Ritze et al. 2016]

Web Data Commons Web Table Corpus [http://webdatacommons.org/webtables/]

• It consists 91.8 million english-language relational web tables of varying quality

• With heterogeneous schemas

• Data about a single entity is found in many web tables

• Entities appear in different combinations in many web tables

Min Max Average Median

columns 2 713 3.48 3

rows 1 35 640 10.37 2
Columns and Rows Distribution of WDC Web Table 
Corpus 3
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A Class in the Knowledge Base
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Fact

Viewing a class in the 
knowledge base as a 
table

Where is potential 
for augmentation?



Data and Web Science Group

Knowledge Base Augmentation
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P1 P2 P3 P4 … PN ? ? ? …

E1 ? ? ? ? ? ? ?

E2 ? ? ? ? ? ?

E3 ? ? ? ?

… ? ? ? ? ?

Em ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ?

… ? ? ? ? ? ? ? ? ? ?

P1 Known Property

? Missing Property

E1 Known Entity

? Missing Entity

Known Fact

? Missing Fact

Slot Filling:
add facts for existing entities 
and existing properties

Schema Expansion:
add new properties

Entity Expansion:
add new entities and their 
descriptions (facts for existing 
properties)

our focus
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Long-Tail Entity Expansion Pipeline
Oulabi, Y. and Bizer, C. (2019). Extending cross-domain knowledge bases with
long tail entities using web table data. Extending Database Technology 2019.
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Row 
Clustering

Entity 
Creation

New 
Detection

Knowledge 
base

New entities added to 
knowledge base

Schema 
Matching

Web tables

Output of first iteration used to refine the 
schema mapping in a second iteration

Our approach:

1. Cluster rows that describe the same instance together
Compare two rows with each other

2. Create entities from row clusters

3. Determine which entities describe new instance
Compare a created entity with a KB instance
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Long-Tail Entity Expansion Pipeline: RESULTS
Oulabi, Y. and Bizer, C. (2019). Extending cross-domain knowledge bases with
long tail entities using web table data. Extending Database Technology 2019.
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Total Existing New entities New facts N. entities N. facts

Class rows entities in KB from WT from WT accuracy accuracy

GF-Player 648,741 30,074 13,983 (+67%) 43,800 (+32%) 0.60 0.95

Song 2,173,536 40,455 186,943 (+356%) 393,711 (+125%) 0.70 0.85
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Some Components Require Supervision
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Row 
Clustering

Entity 
Creation

New 
Detection

Knowledge 
base

New entities added to 
knowledge base

Schema 
Matching

Web tables

Output of first iteration used to refine the 
schema mapping in a second iteration

These components make use of class-specifically trained 
entity matching methods (random forest classifier)

Label type GF-Player Song Settlement Sum

Row pair 1,298 231 2,768 4,297

Entity-instance-pair 80 34 51 165

New entity classification 17 63 23 103

Sum 1,395 328 2,842 4,565

• To train the models we need positive and 
negative entity matching pairs

• We train the models using the T4LTE gold 
standard (Web Tables For Long-Tail Entity 
Extraction), which we manually annotated 
for evaluation and training in the task of 
long-tail entity extraction

Number of labels in T4LTE (http://webdatacommons.org/T4LTE/)
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Problem: Manually Annotating
Class-Specific Training Data Is Not Viable

• Knowledge bases cover many classes

• Creating thousands of manually labeled entity matches for each class 
limits the applicability of automatic knowledge base expansion from web 
data

• We need an alternative to manually labeled entity matches
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Weak Supervision & Data Programming

Weak supervision: reduce labeling effort by using supervision that is more 
abstract or noisier compared to traditional manually labeled high-quality 
training examples (strong supervision). [Ratner2017]

Data programming: paradigm, where experts are tasked with codifying any 
form of weak supervision into labeling functions. These functions are then 
employed within a broader system to generate training data by assigning 
labels and confidence scores to unlabeled data. [Ratner 2016]
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Methodology
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Unsupervised
class-agnostic
matching rule

Ensembled weakly 
supervised classifier

Random forest 
learning algorithm

Set of class-
specific rules

Output: generated 
training data

Labeling Function

1000 random 
unlabeled 

tables

Overall Methodology

We introduce weak 
supervision in the form of 
a small number of bold 
user-provided class-
specific matching rules
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Summary: Similarity Features

Class-agnostic features
• LABEL

• BOW

• PHI1

• SAME_TABLE1

• TYPE2

• POPULARITY2

Class-specific features
• ATTRIBUTE, e. g.

ATTRIBUTE::draftPick
ATTRIBUTE::musicalArtist
ATTRIBUTE::postalCode

• IMPLICIT_ATT, e. g.
IMPLICIT_ATT::team
IMPLICIT_ATT::album
IMPLICIT_ATT::country
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[1] Row clustering only
[2] New detection only
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Unsupervised Class-Agnostic
Matching Rule

• Aggregate similarity features using a weighted average

• Weights are equal for all classes (assigned based on our judgement)

• Class-specific features (ATTRIBUTE and IMPLICIT_ATT) are transformed 

into class-agnostic by averaging

• We classify pairs as matching or non-matching using a threshold (0.5)

• Classification confidence is equal relative distance to the threshold
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User-Provided Class-Specific
Matching Rules

Rules are easy to create:

We restrict the rule format to conjuncts of equality tests, expressed using 
the schema of the knowledge base.

Rules are bold:

Provided rules must be accurate, regardless of their coverage

Small rule sets are sufficient:
We create per class only four rules
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Rules for the Class:
GridironFootballPlayer
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Rules for the Class:
Song
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Rules for the Class:
Settlement
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Rule Execution

Rules are executed using the class-specific ATTRIBUTE and IMPLICT_ATT 
features, which return a similarity score per property. 

Using these  scores:

1. we determine when a rule fires

2. we determine the confidence of the classification 
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Ensembling

• Ensemble rules unsupervised matching rule to increase coverage.

• When multiple rules fire, we consider the one with highest confidence.

• We average the output of the fired rule and the unsupervised model and 
return a classification (along with a confidence score).
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Unsupervised
class-agnostic
matching rule

Ensembled weakly 
supervised classifier

Random forest 
learning algorithm

Set of class-
specific rules
(weak supervision)

Output: generated 
training data

Labeling Function

1000 random 
unlabeled 

tables
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Bootstrapping
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Unsupervised
class-agnostic
matching rule

Ensembled weakly 
supervised classifier

Random forest 
learning algorithm

Set of class-
specific rules
(weak supervision)

Output: generated 
training data

Labeling Function

1000 random 
unlabeled 

tables

Given a labeling function:

1. We select 1000 random tables form the web corpus to annotate

2. We select row-pairs and entity-instance-pairs using label blocking (Lucene)

3. Label pairs using labeling function as either matching and non-matching pairs

4. Using the labeled pairs as training examples we train a random forest classifier
(Labeled training examples are weighted by their classification confidence)
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Experiments
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Experimental Setup

• We evaluate our approaches on T4LTE Gold Standard 

• It uses DBpedia as the target knowledge base to be extended

• We evaluate

1. row clustering performance

2. new detection performance

3. end-to-end performance

• We compare our approaches with strong supervision
(Using 3-fold CV throughout all experiments)
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Row Clustering Performance

Average GF-Player Song Settlement

Method P R F1 F1 F1 F1

Unsupervised 0.76 0.86 0.80 0.90 0.65 0.86

Weak supervision 0.83 0.89 0.86 0.93 0.81 0.84

+ Bootstrapping 0.83 0.90 0.86 0.89 0.83 0.86

Strong supervision 0.86 0.90 0.88 0.91 0.84 0.90
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New Detection Performance

Average GF-Player Song Settlement

Method P R F1 F1 F1 F1

Unsupervised 0.87 0.76 0.80 0.82 0.68 0.89

Weak supervision 0.87 0.81 0.83 0.82 0.78 0.89

+ Bootstrapping 0.87 0.90 0.87 0.87 0.85 0.90

Strong supervision 0.82 0.94 0.87 0.88 0.92 0.81
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End-To-End Performance

Average GF-Player Song Settlement

Method P R F1 F1 F1 F1

Unsupervised 0.71 0.71 0.69 0.76 0.50 0.82

Weak supervision 0.72 0.77 0.74 0.76 0.63 0.82

+ Bootstrapping 0.72 0.86 0.78 0.81 0.72 0.80

Strong supervision 0.73 0.93 0.81 0.84 0.78 0.81
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Bootstrapping and Matching Rules

Row Clustering New Detection

Pairs To Be Labeled 2.8m 1.27m

Matching Pairs 275k 26k

Positive Rules Firings 37k (13%) 13k (50%)

Non-Matching pairs 2.54m 1.27m

Negative Rule Firings 500k (20%) 150k (12%)
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Importance of Ensembling
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Average GF-Player Song Settlement

Method P R F1 F1 F1 F1

MR Unensembled 0.43 0.05 0.09 0.00 0.14 0.14

+ Bootstrapping 0.47 0.58 0.34 0.14 0.74 0.15

MR Ensembled 0.72 0.77 0.74 0.76 0.63 0.82

+ Bootstrapping 0.72 0.86 0.78 0.81 0.72 0.80
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Discussion & Conclusion
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Weak Supervision Using Bold Rules

• Little effort is required for creating rules

• Rules could be mined from or tested on the knowledge 
base

• Ensembling provides full coverage

• Limitation: requires web tables to describe entities 
using useful knowledge base attributes 
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Bootstrapping

Using bootstrapping we can learn a model that 
outperforms the labeling function from which it was 
bootstrapped.

The trained random forest:

– can exploit more class-specific similarity features

– is more expressive than the unsupervised model or the 
matching rules
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Conclusion

• Approach substitutes thousands of manually labeled entity matches
with a small set of user-provided bold class-specific matching rules
when training a supervised learning algorithm.

• Enables cross-domain long-tail entity extraction with little supervision 
effort

• Potential for bootstrapping active learning:

• We can reduce effort spent on learning initial models considerably

• Learned models can be refined by labeling individual selected 
examples
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Thanks for Listening

Links:

• Web Tables for Long-Tail Entity Extraction
http://webdatacommons.org/T4LTE/

• Extracting Long Tail Entities from Web Tables for Augmenting Cross-Domain Knowledge Bases -
http://data.dws.informatik.uni-mannheim.de/expansion/LTEE/
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Row Clustering Performance

Average GF-Player Song Settlement

Method P R F1 F1 F1 F1

Unsupervised 0.76 0.86 0.80 0.90 0.65 0.86

+ Bootstrapping 0.78 0.88 0.83 0.89 0.73 0.86

Weak supervision 0.83 0.89 0.86 0.93 0.81 0.84

+ Bootstrapping 0.83 0.90 0.86 0.89 0.83 0.86

Strong supervision 0.86 0.90 0.88 0.91 0.84 0.90
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New Detection Performance

Average GF-Player Song Settlement

Method P R F1 F1 F1 F1

Unsupervised 0.87 0.76 0.80 0.82 0.68 0.89

+ Bootstrapping 0.86 0.86 0.85 0.86 0.78 0.90

Weak supervision 0.87 0.81 0.83 0.82 0.78 0.89

+ Bootstrapping 0.87 0.90 0.87 0.87 0.85 0.90

Strong supervision 0.82 0.94 0.87 0.88 0.92 0.81

11.09.2019

Using Weak Supervision to Identify Long-Tail Entities

35



Data and Web Science Group

End-To-End Performance

Average GF-Player Song Settlement

Method P R F1 F1 F1 F1

Unsupervised 0.71 0.71 0.69 0.76 0.50 0.82

+ Bootstrapping 0.71 0.81 0.74 0.79 0.60 0.82

Weak supervision 0.72 0.77 0.74 0.76 0.63 0.82

+ Bootstrapping 0.72 0.86 0.78 0.81 0.72 0.80

Strong supervision 0.73 0.93 0.81 0.84 0.78 0.81
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