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Largest change in market cap by company (2009 to 31 March 2018)
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Company name Location Industry

Change in market cap 

2009-2018 ($bn) Market cap 2018 ($bn)

1 Apple United States Technology 757 851

2 Amazon.Com United States Consumer Services 670 701

3 Alphabet United States Technology 609 719

4 Microsoft Corp United States Technology 540 703

5 Tencent Holdings China Technology 483 496

6 Facebook United States Technology 383(1) 464

7 Berkshire Hathaway United States Financial 358 492

8 Alibaba China Consumer Services 302(2) 470

9 JPMorgan Chase United States Financials 275 375

10 Bank of America United States Financials 263 307

(1)Change in market cap from IPO date

(2)Market cap at IPO date

Source: Bloomberg and PwC analysis
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Widening corporate inequality – Top versus bottom of Top 100
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Widening corporate inequality in the Top 100—by country/region to 31 March

6

3.805

5.170 5.538
6.202

6.739

8.052

9.322 9.636

10.928

12.187

1.061 1.260 1.459 1.226 1.145 1.131 2.012 1.517
1.801

2.8222.272

3.311 3.370 2.980 3.347
3.997

3.424 2.996 3.031 3.362

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

US China Europe

42
39 38

41
43

47

53 54 55 54

9 9 9 8 7 7
10 10 10

12

31
33

31
27

28
30

26
24

22 23

0

10

20

30

40

50

60

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

US China Europe

Market cap change 2017 to 2018

• US up $1,259bn

• Europe up $331bn

• China up $1,021bn

M
a

rk
e

t 
C

a
p

 (
$
b
n
)

M
a
rk

e
t 

C
a
p
 (

$
b
n
)

Source : Bloomberg and PwC analysis



PwC | Collapsing the IT stack

Widening corporate inequality – by country to from 2009 to 31 March 2018
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San Francisco Bay Area now in Top 20 economies worldwide…. but for how long?
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“The Bay Area has the 19th-largest economy in the world, ranking above Switzerland and Saudi Arabia….

Startups, particularly those in the consumer-internet business, increasingly struggle to attract capital in the 
shadow of Alphabet, Apple, Facebook et al.”

--The Economist, “Why startups are leaving Silicon Valley,” 30 Aug 2018
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Largest change in market cap by company (2009 to 31 March 2018)
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Collapsing the IT stack
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Wikimedia Commons, 2007
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Most innovations are incremental, adding to the stack, with data as 
an afterthought (Type I)
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Most of the IT workforce just adds to or keeps track of the sprawl
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The US as a whole has more opioid abusers than it does IT workers
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US Census Bureau, Bureau of Labor Statistics, and Health and Department of Human Services, 2018
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Object virtualization (Type II) manages complexity, just so IT can get 
its arms around the sprawl
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EnterpriseWeb and PwC, 2015
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Type III: data-centric architecture reduces both application and 
database sprawl

Applications for execution only, models exposed with the dataApp code trapped in Database orphans and models 

Data lake or hub

Semantic model/rules

  

Applets
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Identify and declare the few hundred business rules you need as a model
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“In every company I’ve ever studied, there are only a few hundred key concepts and relationships that the 
entire business runs on. Once you understand that, you realize all of these millions of distinctions are just slight 
variations of those few hundred important things.”

--Dave McComb, author of Software Wasteland, quoted in Strategy + Business

See “Are you Spending Way too Much on Software at 

https://www.strategy-business.com/article/Are-You-Spending-Way-Too-

Much-on-Software?
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Call the model to reuse those rules whenever necessary
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“You discover that many of the slight variations aren’t variations at all. They’re really the same things with 
different names, different structures, or different labels. So it’s desirable to describe those few hundred concepts and 
relationships in the form of a declarative model that small amounts of code refer to again and again.”

--Dave McComb (as previously cited)

See “Are you Spending Way too Much on Software at 

https://www.strategy-business.com/article/Are-You-Spending-Way-Too-

Much-on-Software?
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Diagnosing the bigger 
problem
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What AI needs versus what it has
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What it needs: Contextualized, disambiguated, highly relevant 
and specific integrated data, flowing to the point of need

What it has: Single batch datasets cleaned up to be good enough 
by data scientists, who spend 80% of their time on cleanup

What it needs: Knowledge engineers, and many bold Data 
Visionaries in addition to big D Data Scientists, data-centric 
architects, pipeline engineers, specialists in many new data niches

What it has: A growing group of tool users versed only in 
probability theory, neural networks, python and R, including small 
D data scientists, engineers and architects, plus scads of 
entrenched application-centric developers

Finance

Operations

Marketing

Input Output
Input 

layer

Hidden 

layer 1

Hidden 

layer 2

Output 

layer
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The real inhibitors to adoption aren’t technological – they’re rooted 
in tribal biases and resistance to change

20

Tribalism CollectivismIndividualism

Anarchy TotalitarianismLocus of inertia

Daniel Quinn, Beyond Civilization and Alice Linsley, “Daniel Quinn: A Return to Tribalism?”, college-ethics.blogspot.com, 2018
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Tribalism – Machine learning edition
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Source: Pedro Domingos, The Master Algorithm, 2015

More at “Machine learning evolution”: http://usblogs.pwc.com/emerging-technology/machine-learning-evolution-infographic/, PwC, 2017

Symbolists Bayesians Connectionists Evolutionaries Analogizers

Use symbols, rules, and 
logic to represent 
knowledge and draw 
logical inference

Assess the likelihood of 
occurrence for 
probabilistic inference

Recognize and 
generalize patterns 
dynamically with 
matrices of probabilistic, 
weighted neurons

Generate variations and 
then assess the fitness of 
each for a given purpose

Optimize a function in 
light of constraints 
(“going as high as you 
can while staying on 
the road”)

Favored algorithm
Rules and decision trees

Favored algorithm
Naïve Bayes or Markov

Favored algorithm
Neural network

Favored algorithm
Genetic programs

Favored algorithm
Support vectors

http://usblogs.pwc.com/emerging-technology/machine-learning-evolution-infographic/
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Tribalism – Data integration edition
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Trend toward more data centricity this way

Application-centric 
RESTful developers

Relational database 
linkers

Data-centric 
knowledge graphers

Application-centric 
ESB advocates

Semantic Web Company, 2018

Computerscience
wiki.org, 2018

TIBCO, 2014

Oracle DBA’s Guide, 2018
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Crossing the chasm between the tribes
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Reducing the amount of unfamiliarity developers confront--familiar document means to achieve 
comparable ends to graph:

• Semantic suites that use the JSON format and familiar hierarchies: SWC’s PoolParty is an example

• GraphQL: A popular document shape language that talks to APIs using SELECT-like statements and tree shapes; 
backend-agnostic; just uses a mental model for graph; addresses the API endpoint proliferation problem

• Accessible web as database methods: JSON-LD and Schema.org, etc. vocabularies

• Document “schemas” via data objects: JavaScript objects to developers = documents to NoSQL DB types; Object 
Data Modeling instead of database semantics

• Mongoose or MongoDB JSON schema features + GraphQL: MongoDB object modeling and querying that can 
be used for subdocument filtering within a GraphQL context

• HyperGraphQL: A GraphQL UI for Linked Data, restricted to certain tree-shaped queries

• Universal Schema Language: Mike Bowers’ document/graph query and modeling language still in development

• COMN: Ted Hills’ well-defined NoSQL + SQL data modeling notation



Progress on solutions

PwC | Collapsing the IT stack 24



PwC | Collapsing the IT stack

Types of logic most used in AI-enabled systems

Rule-based systems (includes KR)

“Handcrafted knowledge” is the term DARPA 
uses; rule-based programming + procedure 
replication in process automation, + some 
knowledge representation (KR)

• Strong on logical reasoning in specific 
concrete contexts

- Procedural + declarative programming + 
set theory,  etc.

- Deterministic 

• Can’t learn or abstract

• Still exceptionally common and useful

Statistical machine learning

• Probabilistic

• From Bayesian algorithms to neural nets (yes, 
deep learning also)

• Strong on perceiving and learning 
(classifying, predicting)

• Weak on abstracting and reasoning

• Quite powerful in the aggregate but 
individually (instance by instance) unreliable

• Can require lots of data

Contextualized, model-driven approach

• Contextualized modeling approach—allows 
efficiency, precision and certainty

• Combines power of deterministic, 
probabilistic and description logic

• Allows explanations to be added to decisions

• Accelerates the training process with the help 
of specific, contextual human input

• Takes less data 

Example: Consumer tax software

Perceiving

Learning

Abstracting

Reasoning

Perceiving

Learning

Abstracting

Reasoning

Perceiving

Learning

Abstracting

Reasoning

Example: Facial recognition 
using deep learning/neural nets

Example: Explains first how handwritten 
letters are formed so machines can decide 
based on these individual models—less data 
needed, more transparency.

John Launchbury of DARPA (https://www.youtube.com/watch?v=N2L8AqkEDLs), Estes Park Group  and PwC research, 2017

Previously dominant On the rise and rapidly improving Nascent, just beginning

1

https://www.youtube.com/watch?v=N2L8AqkEDLs
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Most automated knowledge graph – Diffbot?
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“Diffbot’s crawler regularly refreshes the DKG with new information and its machine learning algorithms are smart enough 
to pass over sites with histories of producing ‘logically inconsistent’ facts.

“‘That’s one of the reasons why we fuse information together from different sources,’ Tung said. ‘Our scale is such that 
there’s minimal potential for errors. We’d bet the business on it.’

“Diffbot launched in 2008 and counts 28 employees among its core staff of engineers and data scientists.”

--Mike Tung of Diffbot, quoted in VentureBeat

Diffbot claims an automated knowledge graph of 1 trillion + facts, designed to grow without humans in the loop. 

That compares with 1.6 billion crowdsourced facts in Google’s knowledge graph, according to VentureBeat.

Kyle Wiggers, “Diffbot launches AI-powered knowledge graph of 1 trillion facts about people, places, and things,” VentureBeat,
30 August 2018



PwC | Collapsing the IT stack

Versus more explicit, precise, contextualized meaning with a triadic, Peircean
knowledge graph and less than 1M concepts?
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“There are many different approaches for distinguishing a logical basis for ontologies, but Peirce basically says to base 
everything around 3s, explains [Mike Bergman of Cognonto]. That is,

1. the object itself; 

2. what a particular agent perceives about the object; 

3. and the way that agent needs to try to communicate what that is. 

‘Without that triad it’s hard to ever get at differences of interpretation, context or meaning,’ he says, whether that be 
between something like events and activities or individuals and classes.

Once you adopt that mindset, a lot of things that seemingly were irreconcilable differences begin to fall away, and the 
categorization of information becomes really very easy and smooth....”

--Mike Bergman of Cognonto, quoted in Dataversity

Jennifer Zaino, “Cognonto Takes On Knowledge-Based Artificial Intelligence,” Dataversity, 23 November 2016



PwC | Collapsing the IT stack

Contextual AI via a large knowledge graph at Fairhair.ai

28

Meltwater, 2018
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Montefiore’s semantic data lake
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Montefiore Health, Franz, Intel and PwC research, 2017
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Siemens’ industrial knowledge graph

“Deep learning fails when it comes to context. Knowledge graphs can 
handle context and enable us to address things that deep learning cannot 
address on its own.”

--Michael May, Head of Company Core Technology, Data Analysis and AI, Siemens

AI Algorithms

1 09:00 – Analyze

Turbine data hub

2 11:00 – Configure

Configure turbine

3 12:00 – Maintain

Master data Mgmt.
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Financial Risk Analysis
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Industrial Knowledge Graph
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Pharma knowledge graphs for patient safety
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Graph integration Natural language processing

Data cleaning during analysis In-memory query engine

Drug safety

Heightened 

focus on safety

Evolving 

regulatory 

demands

Increasing 

public scrutiny

Focus on 

analytics

Increased 

sharing & 

transparency

Doing more with 

the same or less

PwC and Cambridge Semantics, 2018

SolutionsChallenges
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NuMedii’s precision therapeutics knowledge graph
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Ontotext and NuMedii, 2018
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Thomson Reuters’ financial knowledge graph as a service

Thomson Reuters, 2018
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Colryut Group’s graph master data federation (Type II 
transformation)
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This graph visualization + data 
editing/filtering environment allows 
scalable and articulated governance 
at the data layer, as well as 
communications between groups in 
different parts of the organization, 
including IT and executive 
management.

DINTTA_GOEDKODE TA_GOEDKODE

DINT

GC21GL5Q

DINT

Product service center

New Project

DINT

Product service center

Source: Colruyt Group and Tom Sawyer 

Software, 2018

In order to minimize dependencies 

between transformation projects, 

Belgian supermarket chain Colruyt

Group used a master data structuring, 

editing and visualization environment 

created by Tom Sawyer Software. 



Conclusion and some suggestions
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Tell your C-suite: The Third Wave of AI is missing half the data it 
needs

36

• Relationship data has long been overlooked, but specifying relationships is how you build context

• Connected, relationship-rich data will be seen as the most important asset for companies

• Can’t have governance without connected data

• Can’t have connected, meaningful data without a semantic model

• Can’t compete in the digital ecosystem and cross boundaries without meaningful data connectivity

• When it comes to enabling the AI your company needs, think semantic graph: 
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The innovation graph must be semantic to scale

37

Once digitized (with the help of AI 
+ blockchain, etc.), organizations 
play different roles than they've 
been accustomed to in the business 
ecosystem. Some because of their 
data collection heritage can become 
data providers. 

Others take up roles in the data 
supply chain, or position 
themselves as industry platforms or 
marketplaces.
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Document models can be a stepping stone to graphs

38
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Contextual graphs + statistics methods = innovation at scale
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