
Outline

•  Problem Statement and Motivation
– Generalized Path Queries
– Algebraic Problem Interpretation

•  Background
– Algebraic Path Problem Solving

•  Approach
–  Integrating of graph pattern matching with

algebraic path problem solving

•  Evaluation
•  Conclusion

1

Motivating	Example	
2

Query:	 Find	 rela*onships	 between	 passengers	 on	 any	 flights	 to	
Washington	DC	between	June	30	and	July	6	who	purchased	one-way	
*ckets	by	cash,	and	countries	on	the	CIA	watchlist	where	there	is	at	
least	one	financial	link	through	any	bank.	

1.   Rela,onships	 are	 paths	 that	 must	 be	 extracted	 not	 merely	
matched!!!	

•  e.g.	different	from	path	expression/property	path	queries	

2.   Par,cipa,ng	en,,es	are	not	explicitly	stated	
	

Pa>ern	p1:	
Passengers	 on	 flights	 to	 Washington	
DC	between	 June	 30	 and	 July	 6	who	
purchased	one-way	*ckets	by	cash	

Pa>ern	p2:	
Countries	on	the	CIA	
watchlist	

?

Existing	Problem	Interpretation	Approaches	
3

Exis*ng	
Approaches	

Graph	Theore*c	
Interpreta*on		

Algebraic	
Interpreta*on	

Rela*onal	
Algebra	
(Database	
Approach)	

Hybrid	
Approach	
(Par*ally	
rela*onal	+	
graph)	

Total	Algebraic	
Approach	(Rela,onal	

Algebra*	+	Path	Algebra)	

•  For	graph	data	models	like	RDF	there	are	mul*ple	ways	to	
approach	the	problem

Holistic Decomposable

Comparison of Approaches

Graph Theoretic
•  Different problems translate to

different graph problems i.e.
different algorithms
–  Ex. is sub-graph homeomorphism

problem (NP hard).
–  Others: Subgraph Isomorphism,

Shortest Paths, Disjoint Paths

•  Often difficult to parallelize or
optimize

•  Cant deal with declarative
specifications

Algebraic
•  Decompose into smaller operators

–  Reuse is possible
–  Adapt optimization and composition of

smaller operators

•  Relational algebra not ideal
–  Arbitrary path length requires iteration

and fixpoint semantics

•  Hybrid approaches exist
–  Pattern matching (algebraic), traversal

(graph theoretic)
•  Emphasis on shortest paths for

traversals

4

5

Query: Find relationships between passengers on any flights to
Washington DC between June 30 and July 6 who purchased one-way
tickets by cash, and countries on the CIA watchlist where there is at
least one financial link through any bank.

Problem interpretation is as a Generalized Path Query – gpqs with

1.  Two entity sets declaratively specified as patterns – P1, P2

2.  A connection set linking p1, p2 instances

3.  A connection constraint on the connection set (edge type membership)

Our	Proposal:	A	Total	Algebraic	Approach	

1 : Solvable with algebraic graph pattern matching

2, 3 : Solve with algebraic path finding (plus extension)

Algebraic	Path	Problem	Solving	Framework	
6

•  An	efficient	 algebraic	 path	 problem	 solving	 approach	 introduced	
by	Tarjan[23,	24].		

•  Basic	Defini,ons:	
•  An	edge	e	in	a	directed	labeled	graph	G	=	(V,E)	is	denoted	as	e	=	
(v1	,	v2)	with	label	λ(e)	=	le	where	v1,	v2	∈	V	and	e	∈	E.	

•  A	path	p	in	such	a	graph	G	=	(V,E)	is	an	alterna*ng	sequence	of	
nodes	and	labeled	edges	termina*ng	in	a	node	p		

•  =	{v1	,	le1	,	v2	,	le2	,	...,	vn	,	len	,	vn+1}	where	v1	,	v2	,...,vn	,	vn+1	∈	V	
and	e1	,	e2	,...,	en	∈	E.			

•  A	Path	Expression	[23,	24]	of	type	(s,	d),	PE(s,	d),	is	a	3-tuple	〈s,	d,	
R〉,	where		
§  R	 is	 a	 regular	 expression	 over	 the	 set	 of	 edges	 defined	 using	

union(∪),	concatena*on(•)	and	closure	(*).	
§  The	 language	 L(R)	 of	R	 represents	 paths	 from	 s	 to	 d	 where	 the	

graph	contains	nodes	s	and	d.	

Path	Encoding	as	Path	Expressions	
7

PE(2,	7)	=	〈2,	7,	((b	•	c	•	f)	∪	(i	•	f))〉	

1	

4	

2	

3	

7	

5	

8	

6	

k	
a	

b	
i	

c	

d	

f	
h	

g	

e	

j	

PE(1,	4)	=	〈1,	4,	(k)〉	

Graph	Path	Information	Representation:		
A	Sequence	of	Path	Expressions		

8

•  A	Path	Sequence	(PS)	[23,25]	is	a	unique	ordering	of	path	expressions	
that	represent	all	path	informa*on	in	a	graph,	such	that	for	any	path	p,		

§  there	is	a	unique	par**on	of	p	into	non	empty	subpaths,	and		

§  a	unique	sequences	of	indices	I	of	PS,	such	that		

§  the	ith	subpath	of	p	is	represented	by	the	path	expression	in	PS	at	
the	ith	index	in	I.		

PE1	 PE2	 PE3	 PE4	 PE1000	.	.	.		 PE100	 PE155		 PE390	 .	.	.		PS:		

Path	p:		
p1	 p2	 p3	 p4	 p5	

I	=	{2,	3,	100,		
						390,	1000}	

•  The	path	sequence	representa*on	of	a	graph	allows	for	
path	problems	to	be	solved	by	single	forward	scan.	

Path	Computation	using	Path	Sequence	
9

•  A	simple	propaga*on	SOLVE	algorithm	[23,25]	can	be	used	to	solve	
path	problems.	

•  The	 SOLVE	 algorithm	 assembles	 path	 informa*on	 while	 scanning	
the	path-sequence	from	lei	to	right.		

•  At	 every	 itera*on	 of	 the	 SOLVE	 algorithm	 the	 following	 step	 is	
performed		

𝑃𝐸(𝑠, ​𝑤↓𝑖 )⋃(𝑃𝐸(𝑠, ​𝑣↓𝑖 ) � 𝑃𝐸(​𝑣↓𝑖 , ​𝑤↓𝑖 ))→𝑆𝐴[​𝑤↓𝑖 ]	

Overview	of	Approach	(1)	
10

•  We	built	a	prototype	by	integra*ng		
§  SemStorm	[31]:	

o  a	Hadoop-based	file	organiza*on	storage	system	
o  supports	efficient	graph	pakern	matching	query	execu*on	using	an	
algebraic	query	evalua*on	technique		

o  uses	Apache	Tez	as	the	execu*on	environment.	
§  Serpent	[25,27]:	

o  plalorm	 for	 finding	 all	 paths	 between	 a	 set	 of	 sources	 and	
des*na*ons.	

o  builds	on	the	path	algebraic	technique	using	path-sequences.	

Path Filter Path Finder Pattern Filter Pattern Matching

P1 :	 Pas sengers	 on	
flights	 to	 Washington	
DC,	 Purchased	 one-way	
*ckets	by	cash	
	

P2:	Countries	on	the	CIA	
watchlist	

Finding	paths	
between	P1	and	P2	

P1:	 Between	 June	
30	and	July	6	

With	at	least	one	
financial	link	Semstorm	performs	

these	components	
Serpent	performs	
these	components	

1.   Query	Expression	
•  Goal:	Minimize	disrup*on	to	exis*ng	infrastructure,	e.g.	parser.	
•  Solu>on:	Use	syntac*c	sugar	to	represent	path	operator.	

2.   Query	Planning	
•  Goal:	 Integrate	 graph	 pakern	 matching	 with	 path	 problem	
solving	

•  Solu>on:	Modify	graph	pakern	matching	query	plan	by	adding	
algebraic	path	querying	operators	to	produce	a	gpqs	query	plan.	

3.   Query	Execu,on	
•  Goal:	Execute	gpqs.	
•  Solu>on:	 Translate	 gpq	 logical	 query	 plan	 into	 physical	 query	
plan	by	introducing	required	physical	query	operators.	

Overview	of	Approach	(2)	
11

Introduction	of	Syntactic	Sugar	–		
?pathVar	as	a	special	property	variable	

12

•  Avoids	change	to	SPARQL's	query	syntax.	

•  For	triple	pakern	〈?s ?pathVar ?d〉,
•  ?pathVar	is	actually	a	path	variable		

•  removed	and	handled	specially	while	rest	of	query	is	compiled	normally	as	
graph	pakern	query.	

SELECT * WHERE {
 ?s1 rdf:type akt:Affiliated-Person .
 ?s1 akt:full-name "Wendy E. Mackay" .
 ?s akt:has-author ?s1 .
 ?s2 akt:full-name "Irene Greif" .
 ?s2 akt:has-affiliation ?d .
 ?s ?pathVar ?d .
}

Introduction	of	Syntactic	sugar	–		
?pathVar	as	a	Property	Variable	

13

SELECT * WHERE {
 ?s1 rdf:type akt:Affiliated-Person .
 ?s1 akt:full-name "Wendy E. Mackay" .
 ?s akt:has-author ?s1 .
 ?s2 akt:full-name "Irene Greif" .
 ?s2 akt:has-affiliation ?d .
 ?s ?pathVar ?d .
}

?s2	

?d	

"Irene	Greif"	:fn	

:ha	
?s1	

"Wendy	E.	
Mackay"	

"Irene	Greif"	:type	

:fn	?s	

:ha	

•  Challenge:	 Need	 to	 track	 the	
path	 source	 and	 des*na*on	
variables	in	the	graph	pakern		

•  Solu,on:	 Use	 SemStorm’s		
datastructures	 for	 tracking		
variables.	

1.   Query	Expression	
•  Goal:	Minimize	disrup*on	to	exis*ng	infrastructure,	e.g.	parser.	
•  Solu>on:	Use	syntac*c	sugar	to	represent	path	operator.	

2.   Query	Planning	
•  Goal:	 Integrate	 graph	 pakern	 matching	 with	 path	 problem	
solving	

•  Solu>on:	Modify	graph	pakern	matching	query	plan	by	adding	
algebraic	path	querying	operators	to	produce	a	gpqs	query	plan.	

3.   Query	Execu,on	
•  Goal:	Execute	gpqs.	
•  Solu>on:	 Translate	 gpq	 logical	 query	 plan	 into	 physical	 query	
plan	by	introducing	required	physical	query	operators.	

Overview	of	Approach	
14

Logical	Plan	Example	as	a	tree	
15

https://jena.apache.org/

(prefix ((akt:http://www.aktors.org/ontology/portal#)
 (rdf:http://www.w3.org/1999/02/22-rdf-syntax-ns#))
 (project (?s1 ?s ?d)
 (product
 (join
 (BGP
 [triple ?s1 rdf:type akt:Affiliated-Person]
 [triple ?s1 akt:full-name "Wendy E. Mackay"]
)
 (BGP
 [triple ?s akt:has-author ?s1]
))
 (BGP
 [triple ?s2 akt:full-name "Irene Greif"]
 [triple ?s2 akt:has-affiliation ?d]
)))

Apache	Jena	Query	Plan	(Sparql	Syntax	Expression	–	SSE)	

BGP?s1	 BGP?d	BGP?s	

join	

product	

project	

Logical	Query	Plan	as	a	tree	

?s1	

Disconnected	sub-graph	
pakerns	leads	to	cross-product	

16

•  Remove	cross-product	and	projec*on	operators	and	introduce	path	
query	operators.	

path	filter	

path	operator	

Logical	Plan	Transformation	Example	

BGP?s1	 BGP?d	BGP?s	

join	

product	

project	

BGP?s1	 BGP?d	BGP?s	

join	
?s1	 ?s1	

1.   Query	Expression	
•  Goal:	Minimize	disrup*on	to	exis*ng	infrastructure,	e.g.	parser.	
•  Solu>on:	Use	syntac*c	sugar	to	represent	path	operator.	

2.   Query	Planning	
•  Goal:	 Integrate	 graph	 pakern	 matching	 with	 path	 problem	
solving	

•  Solu>on:	Modify	graph	pakern	matching	query	plan	by	adding	
algebraic	path	querying	operators	to	produce	a	gpqs	query	plan.	

3.   Query	Execu,on	
•  Goal:	Execute	gpqs.	
•  Solu>on:	 Translate	 gpq	 logical	 query	 plan	 into	 physical	 query	
plan	by	introducing	required	physical	query	operators.	

Overview	of	Approach	
17

Implementation	Strategy	
18

•  Physical	query	operators	for	our	plalorm	are	Tez	ver*ces	

•  Physical	query	plan	is	represented	by	the	Tez	DAG.		

•  The	following	physical	query	operators	were	introduced	

§  Annotator	 Vertex	 for	 source,	 des,na,on	 and	 constraint	
variables	 iden*fy	 the	 source,	 des*na*on	 or	 constraint	
variables,	 allowing	 only	 the	 bindings	 for	 that	 variable	 to	
pass	through.	

§  PathComputer	Vertex	is	the	path	operator	which	performs	
the	final	path	computa*on.	

Example	Query	&	DAG	
19

TypeScanner:
:?s	

TypeScanner:
:?s1	

Annotator	-	
Source:	[[0,	-1]]	

Annotator	-	
Des*na*on:	[[2,	1]]	

PathComputer::
Src:	?s,	Dst:	?d	

TypeScanner:
:?s2	

Packager::?
s,?s1	

Annotator	(?
s1):	0	

Annotator	(?
s1):	1	

PREFIX akt: <http://www.aktors.org/ontology/
portal#>
PREFIX rdf: <http://www.w3.org/1999/02/22-
rdf-syntax-ns#>

SELECT * WHERE
{
 ?s1 rdf:type akt:Affiliated-Person .
 ?s1 akt:full-name "Wendy E. Mackay" .
 ?s akt:has-author ?s1 .

 ?s2 akt:full-name "Irene Greif" .
 ?s2 akt:has-affiliation ?d .
 ?s ?pathVar ?d .
}

Example	gpq	Physical	query	plan	

Evaluation	
20

Test	Setup:	

•  We	compared	our	integrated	system	with	an	exis*ng	plalorm	on	
1.  Expressiveness.	
2.  Query	 compila*on	 *me	 comparison	 with	 and	 without	 path	

operator.	
3.  Performance.	
4.  Completeness	of	results.	

•  Evalua*on	was	conducted	on	single	node	server		
§  running	HDFS	
§  with	Xeon	octa	core	x86	64	CPU	(2.33	GHz),		
§  40GB	RAM,	
§  two	HDDs	(3.6TB	and	445GB).	

Issues	with	Existing	Platforms	
21

Neo4j:	
•  The	fast	BFS	algorithm	is	only	for	finding	shortest	path.	

•  For	finding	all	paths	the	slower	exhaus,ve	DFS	is	used.	

•  Gpqs	could	not	be	 run	on	Neo4j	as	 it	was	 running	out	of	 resources	
and	crashing.	

Stardog:	
•  Uses	 algebraic	operators	but	applies	path	filter	first	and	 then	 joins	

with	graph	pakern.	

•  This	is	efficient	only	if	the	path	filter	is	highly	restric*ve.	

•  Limited	support	for	path	constraints.	

•  Hence,	could	not	compare	constrained	queries.	

Dataset	and	Queries	
22

•  Our	 queries	 were	 evaluated	 on	 the	 BTC500M	 dataset	 (size	
0.5GB,	2.5	million	triples).	

•  The	queries	were	 formulated	 to	find	paths	 that	 are	 at	 least	
three	hops	long.		

•  The	queries	vary	 from	small	 set	of	 sources	and	des*na*ons	
to	very	large	set	of	sources	and	des*na*ons.	

Number	of	sources	and	Des,na,ons	

Queries	 Sources	 Des,na,ons	 Queries	 Sources	 Des,na,ons	

SmallQuery1	 25	 2	 LargeQuery1	 13641	 907	

SmallQuery2	 4	 6	 LargeQuery2	 29974	 32583	

SmallQuery3	 4	 3	 LargeQuery3	 11793	 6	

SmallQuery4	 29	 7	 LargeQuery4	 29974	 2290	

SmallQuery5	 26	 31	 LargeQuery5	 2290	 32582	

Large	Constrained	Query	Execu,on	Time	Comparison	

Constrained	Query	 Unconstrained	Query	

0	 200	 400	 600	 800	 1000	

LQ1	

LQ2	

LQ3	

LQ4	

LQ5	

Execu,on	Time	(seconds)	

Small	Constrained	Query	Execu,on	Time	Comparison	

Constrained	Query	 Unconstrained	Query	

0	 3	 6	 9	 12	 15	

SQ1	

SQ2	

SQ3	

SQ4	

SQ5	

Execu,on	,me	(seconds)	

Constrained	vs.	Unconstrained	GPQs	
23

•  Stardog	has	limited	support	for	path	constraints.	

•  Neo4j	has	predicate	func*ons	(all,	any,	exists,	none,	single)	
similar	to	constraints.		

•  The	constrained	queries	took	longer	*me	to		
					complete	since	these	include	an	extra	filtering	step.	

Query	Compilation	Time	Comparison	
24

•  The	path	operator	does	not	have	much	effect	on	the	query	
compila*on	*me.	

•  In	most	cases	the	compila*on	*me	increased	by	less	than	one	
second.	

0	

0,5	

1	

1,5	

2	

2,5	

3	

SQ1	 SQ2	 SQ3	 SQ4	 SQ5	 LQ1	 LQ2	 LQ3	 LQ4	 LQ5	

Ti
m
e	
(s
ec
on

ds
)	

Query	compila,on	,me	comparison	

With	Path	Operator	 Without	Path	Operator	

Performance	Evaluation	
25

•  Stardog	performs	beker	in	terms	of	absolute	*me	taken.		

•  However,	 for	 most	 queries	 the	 number	 of	 paths	 found	 by	
Stardog	is	much	less.	

•  Hence,	we	ploked	the	*me	taken	per	path	iden*fied.	

0,00	

300,00	

600,00	

900,00	

1200,00	

SQ1	

Ti
m
e	
pe

r	p
at
h	
(m

ill
is
ec
s)
	

Small	Queries	,me	per	path	

Sem-Ser	 Stardog	

0,00	

20,00	

40,00	

60,00	

80,00	

100,00	

120,00	

140,00	

SQ2	 SQ3	 SQ4	 SQ5	

Ti
m
e	
pe

r	p
at
h	
(m

ill
is
ec
s)
	

Large	Queries	,me	per	path	

Sem-Ser	 Stardog	

0,00	

2,00	

4,00	

6,00	

8,00	

10,00	

12,00	

LQ1	 LQ3	 LQ4	

Ti
m
e	
pe

r	p
at
h	
(m

ill
is
ec
s)
	

0,00	
0,05	
0,10	
0,15	
0,20	
0,25	
0,30	
0,35	
0,40	
0,45	

LQ2*	 LQ5	

Ti
m
e	
pe

r	p
at
h	
(m

ill
is
ec
s)
	

Algebraic	path	evalua*on	is	also	more	MQO	amenable			

Completeness	of	Results	
26

•  Stardog	produced	incomplete	results.	

•  BTC	has	a	lot	of	self-loops:	triples	like		
〈acm:58567 akt:has-publication-reference acm:58567〉.		

•  Stardog	does	not	consider	these	triples	in	its	paths.	

•  Stardog	results	also	contain	duplicate	paths.	

Small	Queries	Number	of	paths	Comparison	

Sem-Ser	 Stardog	

0	

500	

1000	

1500	

2000	

2500	

3000	

SQ2	
N
um

be
r	o

f	p
at
hs
	

Large	Queries	Number	of	paths	Comparison	

Sem-Ser	 Stardog	

0	

50	

100	

150	

200	

250	

300	

350	

SQ1	 SQ3	 SQ4	 SQ5	

N
um

be
r	o

f	p
at
hs
	

0	

2000	

4000	

6000	

8000	

10000	

LQ1	 LQ3	

N
um

be
r	o

f	p
at
hs
	

0	

150000	

300000	

450000	

600000	

750000	

900000	

LQ2*	 LQ4	 LQ5	

N
um

be
r	o

f	p
at
hs
	

Conclusion
•  An	 algebraic	 query	 evalua*on	 strategy	 for	
generalized	path	queries	with	declara*vely	defined	
sources,	des*na*ons	and	constraints.		

•  A	 general	 framework	 to	 integrate	 any	 graph	
pakern	 matching	 plalorm	 with	 a	 path	
computa*on	plalorm.		

•  An	 example	 implementa*on	 of	 an	 integrated	
plalorm.		

•  Performance	 comparison	 of	 integrated	 plalorm	
with	a	popular	exis*ng	plalorm.	

•  The	work	 presented	 here	 is	 par*ally	 funded	 by	NSF	 grant	
IIS-1218277	and	CNS-1526113.		

27

Thank	You!

28

PE(1,	4)	⋃	()	
PE(s,	wi)	⋃	()	→	SA[wi]	

PE(1,	5)	⋃	()	

Example	Path	Sequence	and	Solve	
Algorithm	

29

1	

4	

2	

3	

7	

5	

8	

6	

k	
a	

b	
i	

c	

d	

f	
h	

g	

e	

j	

1:	 (1,	4,	k)	 2:	 (2,	3,	b)	

3:	 (2,	4,	i)	 4:	 (3,	4,	a	•	k	∪	c)	

5:	 (4,	5,	d)		 6:	 (4,	7,	f)	

7:	 (5,	6,	e	∪	j)	 8:	 (5,	7,	h)	

9:	 (7,	8,	g)	 10:	 (3,	1,	a)	

Solving(s	=1,	d):		Ini*alize:		PE(s,	s)	=	λ	→	SA[s],		PE(s,	d)	=	∅	for	d ≠𝑠→	SA[d]	
Step	i	(itera,on	i):	 PE(vi,wi)	PE(s,vi)	•		
Step	1	(s=1,	v1=1,	w1=4):		 PE(1,1)	•	 PE(1,	4)	

=		SA[4]			⋃	(SA[1]			•		PE(1,4))	

Step	5	(s=1,	v5=4,	w5=5):		 PE(1,4)	•	PE(4,	5)	
=		SA[5]			⋃	(SA[4]			•		PE(4,5))	

PE(1,	6)	⋃	()	Step	7	(s=1,	v7=4,	w7=5):		 PE(1,5)	•	PE(5,	6)	
=	∅	⋃	((k	•	d)	•	(e	⋃	j)		
=	(k	•	d	•	e)	⋃	(k	•	d	•	j)	→	SA[6]	

……

……
=	SA[6]	⋃	(SA[5]	•	PE(5,	6))		

=	∅	⋃	(λ	•	k)	=	k	→	SA[4]	

=	∅	⋃	(k	•	d)	=	k	•	d	→	SA[5]	

