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Challenges of Making Data 
Interoperable during Query 
Processing  
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Motivating Example

Query: Drugs with the active substance Simvastatin: 
○ Name of possible drug targets, 
○ Chemical formula of a drug, 
○ Side effects, and
○ Disease Name
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Motivating Example- Available Data Sources

Biological 
Data

Chemical 
Data

Genomic 
Data

Diverse data sources potentially incomplete and noisy
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Motivating Example- Data Sources in 
Heterogeneous Formats

Data sources is diverse formats, e.g., XML, CSV, JSON
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Data Evolution….

Data
Entity 
Changes, e.g.,
Completeness

Schema 
Changes

Changes in Data 
Source 
Performance 
and Availability 

Data Distribution  
Changes
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Impacting Data Complexity Dimensions

Veracity, 
Variety, 

and Variability
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Query Over Heterogeneous Data Sources

● Query: Drugs with the active substance Simvastatin: 
○ Name of possible drug targets, 
○ Chemical formula of a drug, 
○ Side effects, and
○ Disease Name
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Interoperability Issues During Query Processing

Drug

Drug_Target

Target

accNum DrugName formula pubChemId

simvastatin C25H38O5 54454
DB00295 Morphine C17H19NO3 5288826

side_effects.csv

ID Name Gene UniprotID

631 3-hydroxy-3-methylglutaryl-co
enzyme A reductase

HMGCR P04035

1882 Ras-related C3 botulinum 
toxin substrate 1

RAC1 P63000

7683 Mu-type opioid receptor OPRM1 P35372

Drug Target
631
1882

DB00295 7683

[{

  "diseaseID": " ",
  "name": "Diabetes_mellitus",
  "associatedGene": ["ACE", "ABCC8", "TCF1"]
  },{

  "diseaseID": " ",
  "name": "Kaposi sarcoma, susceptibility to, 
148000",
  "associatedGene": ["IL6", "IFNB2", "BSF2"]
 }]

drug_names.csv



Page 9

Query Over Heterogeneous Data Sources

● Query: Drugs with the active substance Simvastatin: 
○ Name of possible drug targets, 
○ Chemical formula of a drug, 
○ Side effects, and
○ Disease Name Query must be 

evaluated against 
heterogeneous 
sources, that 
potentially suffer of 
quality issues, and 
evolve over time



Agenda

1. Data Integration Systems
2. Adaptive SPARQL Query Engines
3. Hybrid  SPARQL Query Engines
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Data Integration Systems

A data integration system DIS=<O,S,M>:
• O is a set of general concepts in a general schema (virtual)
• S is a set of {S1,..,Sn} of data sources
• M is a set of mappings between sources in S and general 

concepts in O

cf. Lenzerini 2002
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Data Integration Systems

Data Integration 
System

CentralizedDistributed

Homogeneous

Heterogeneous

Data Integration 
System

Data Integration 
System

Wrapper Wrapper Wrapper

Data Integration 
System
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Data Integration Systems

Data Integration 
System

CentralizedDistributed

Homogeneous

Heterogeneous

Data Integration 
System

Data Integration 
System

Wrapper Wrapper Wrapper

Data Integration 
System

✽ ✽

✽ Existing Data Integration Systems for Querying Processing over RDF 
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Query Rewriting Problem

Query Rewriting Problem (QRP):
● A query Q is a conjunctive query 

over predicates in O
● Find a conjunctive query Q’ 

expressed in sources in S based on 
rules in M, such that
○ Evaluation of Q’ produces only 

answers of Q
○ Evaluation of Q’ produces all 

the answers of Q given the 
sources in S

Data Integration 
System

Wrapper Wrapper Wrapper

Theorem [Levy et al. 1995]
To check if there is a valid rewriting Q’ of Q with at 
most the same number of goals as Q is an 
NP-complete problem. 
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Challenges for Query Processing  

15

Given a query Q in a formal language, i.e., SPARQL
● Identify the relevant data sources for Q (Source Selection)
● Decompose Q into subqueries on relevant data sources (Query Decomposition)
● Plan evaluation of subqueries against relevant data sources (Query Planning)
● Merge data collected from relevant data sources (Query Execution)

Relevant data sources for Q: minimal set of sources S 
from a federation of source F such that the answer of 
evaluating Q in S is the same than evaluating Q in F
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Federated SPARQL Query Engines

Web-access interfaces 
(unpredictable behavior) that allow for 
querying RDF data:
● SPARQL Endpoints: respect 

SPARQL protocol, i.e., any 
SPARQL query 

● Linked Data Fragments: limited 
query capabilities, i.e., only one 
triple pattern

Data Integration 
System

Challenges: Query processing is impacted by different 
parameters, e.g., query capabilities, data fragmentation, 
dataset size and connectivity, query selectivity, and 
current conditions of the Web-access interfaces

Federation of RDF Data Sources
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Federated Query Engine

Source Selection & Query Decomposition

Query Optimizer

Execution Strategies  

SPARQL Query Q
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Federated SPARQL Query Engines 

LILAC[5] FEDRA[6]

Fed-DESATUR[3]

MULDER[10]

Extensions 

DAW[9]

HIBISCUS[15]

ANAPSID[1]

SPLENDID [3]

[4]

[12]

Data Integration 
System

Network of Linked 
Data Eddies 
(nLDE) [2]

[7]

Ontario [14]
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Required Solutions to Support Evolution 

Source Evolution

Selecting the sources 
according to their current 
conditions and availability

Querying Evolving Data

Environment 
Evolution

Executing  queries 
according to current 
conditions of the 
environment

Data Evolution
Considering the status of the 
data, e.g., completeness, during 
the execution of the query

Knowledge 
Evolution
Considering the evolution 
of the knowledge during 
the execution of the query

Knowledge 
Incompleteness
Considering that unknown 
facts may need to be 
predicted during query 
execution

1

2

3

4

5
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Adaptive SPARQL Query Engines

Adapt to Source and Environment Evolution:
▪ Misestimated or missing statistics.
▪ Unexpected correlations.
▪ Unpredictable costs.
▪ Dynamically changing data, workload, and source availability.
▪ Changes at rates at which tuples arrive from sources

• Initial Delays.
• Slow Delivery.
• Bursty Arrivals.
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Adaptivity in Federated Query Processing

Query Engines able to:

●  Change their behavior by learning the behavior of data 
providers

●   Receive and exploit information from the environment
●   Use up-to-date information to change their behavior
●   Keep iterating over time to adapt their behavior based on 

the environment conditions
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Existing Federated SPARQL Query Engines

Ex
is

tin
g 

Fe
de

ra
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d 
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 E
ng

in
es Adaptive Source Selection

Adaptive Query Processing

Identification of Relevant 
Sources Based on Current 

Conditions

Query Decomposition Based on 
Current Conditions 

Adaptive Operators, e.g., 
GJoin[1], SMJoin [13]

Adaptive Query Engines, e.g., 
Networks of Linked Data 

Eddies[2] 
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Existing Federated SPARQL Query Engines
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Adaptive Query Processing

Identification of Relevant 
Sources Based on Current 

Conditions

Query Decomposition Based on 
Current Conditions 

Adaptive Operators, e.g., 
GJoin[1], SMJoin [13]

Adaptive Query Engines, e.g., 
Networks of Linked Data 

Eddies[2] 

Only adaptivity to changes in the 
environment is addressed!!
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Adaptivity During Source Selection

25

Fine-Grained 
Adaptivity

ANAPSID SPLENDID

Coarse-Grained 
AdaptivityNo Adaptivity

Fed-DESATUR

MULDERDAW
HIBISCUS

LILAC FEDRA

Source Selection techniques that allow for identifying the sources that can be 
used to answer a query based on the current conditions of the sources
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Adaptivity During Query Execution

26

Fine-Grained 
Adaptivity

ANAPSIDSPLENDID

No Adaptivity

Fed-DESATUR

MULDER

DAW HIBISCUS

LILAC FEDRA

Implement physical operators and query processing techniques to adjust 
query schedulers to the conditions of the sources and the network

Network of 
Linked Data 
Eddies  (nLDE)
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Evaluation

Dataset: DBpedia 2015 (HDT on top of TPF server), 837M triples

Benchmark 1: 14 high-selective queries (<1000 int. res.)

Benchmark 2:  Four low-selective queries (>1000 int. res.)

Metrics:
•  Execution Time, ms
•  Completeness over time, %
Compared tools:

● TPF: triple pattern fragment server [7]
● nLDE: network of Linked Data Eddies [2]
● SMJoin: multi-way join operator for SPARQL [13]
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Benchmark 1: High Selective Queries

An adaptive approach like SMJoin outperforms other approaches in 
high-selective queries that produce small number of intermediate results
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Benchmark 2: Low Selective Queries

•SMJoin yields the first answer at about the same time as nLDE
•SMJoin has to process more intermediate results
•Q2: results are yielded but all intermediate tuples have to be processed

Q1 Q2 
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Benchmark 2: Low Selective Queries

•SMJoin yields the first answer at about the same time as nLDE
•SMJoin has to process more intermediate results

Q3 Q4 
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Required Solutions to Support Evolution 

Source Evolution

Selecting the sources 
according to their current 
conditions and availability

Querying Evolving Data

Environment 
Evolution

Executing  queries 
according to current 
conditions of the 
environment

Data Evolution
Considering the status of the 
data, e.g., completeness, during 
the execution of the query

Knowledge 
Evolution
Considering the evolution 
of the knowledge during 
the execution of the query

Knowledge 
Incompleteness
Considering that unknown 
facts may need to be 
predicted during query 
execution

1

2

3

4
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Data Integration Systems

Data Integration 
System

CentralizedDistributed

Homogeneous

Heterogeneous

Data Integration 
System

Data Integration 
System

Wrapper Wrapper Wrapper

Data Integration 
System

✽

✽ Hybrid Approaches for Querying Processing over RDF 
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Hybrid Federated Query Engines

33

Source Selection & Query Decomposition
over Heterogeneous Sources

Hybrid Execution  Strategies 
over Heterogeneous Sources 

Query Optimizer

SPARQL Query Q

Kemele M. Endris, Philipp D. Rohde, Maria-Esther Vidal, Sören Auer: Ontario: Federated Query Processing Against a Semantic Data Lake. 
DEXA (1) 2019

Source Selection & Query Decomposition

Query Optimizer

Execution Strategies  

SPARQL Query Q
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● Benchmark:
○ Life Science Linked Open Data (LSLOD)[15]

○ 10 RDF Data Source

○ 10 Simple Queries

■ UNION, OPTIONAL, DISTINCT

■ 3 - 8 triple patterns

■ 2 - 4 star-shaped sub-queries

Experimental Setup

#triples #subjects #predicates #objects RDF file size

96.10 M 8.32 M 742 27.47 M 16.0 GB

15] A. Hasnain, Q. Mehmood, S. Sana e Zainab, M. Saleem, C. Warren, D. Zehra, S. Decker, and D. 
Rebholz-Schuhmann. Biofed: federated query processing over life sciences linked open data. Journal of 
Biomedical Semantics, 8(1):13, Mar 2017. 
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Data Preparation Pipeline

RDF2TSV Mappings + 
SQL Script

Normalization + 
Indexing

● One NT file per RDF Class
● Transform NT files to

TSV files
● Single-value predicates

○ main file of RDF Class
● Multi-value predicates

○ separate file for each 
multi-value predicate

● Generate RML mappings from 
the data collected during 
RDF2TSV

○ one file per RDF Class
● SQL script for creating the 

relational tables
○ one file per data set
○ data is loaded from TSV 

with LOAD DATA INFILE 
command

● Normalization by hand
● 3NF
● Indexes

○ primary keys
○ candidate keys

● Foreign key constraints
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● 23 Docker containers
○ 10 RDF sources (Virtuoso 6.01.3127)
○ 10 RDB sources (MySQL 5.7)
○ Three engines (FedX, MULDER, 

Ontario)
● Metrics:

○ Execution time: Time elapsed 
between query submission and 
retrieval of last answer

○ Cardinality: Number of answers 
produced by the engine

○ Completeness: Percentage of 
answers returned w.r.t the ground truth

○ Throughput: number of answers 
produced per second

○ dief@t [15]:  Continuous efficiency at 
time t

■ Area-under-the-curve of the 
answer traces

Experimental Setup

[15] Maribel Acosta, Maria-Esther Vidal, York Sure-Vetter: Diefficiency Metrics: Measuring the Continuous 
Efficiency of Query Processing Approaches. International Semantic Web Conference, 2017

Experimental Configuration
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● 23 Docker containers
○ 10 RDF sources (Virtuoso 6.01.3127)
○ 10 RDB sources (MySQL 5.7)
○ Three engines (FedX, MULDER, 

Ontario)
● Metrics:

○ Execution time: Time elapsed 
between query submission and 
retrieval of last answer

○ Cardinality: Number of answers 
produced by the engine

○ Completeness: Percentage of 
answers returned w.r.t the ground truth

○ Throughput: number of answers 
produced per second

○ dief@t [15]:  Continuous efficiency at 
time t

■ Area-under-the-curve of the 
answer traces

Experimental Setup

[15] Maribel Acosta, Maria-Esther Vidal, York Sure-Vetter: Diefficiency Metrics: Measuring the Continuous 
Efficiency of Query Processing Approaches. International Semantic Web Conference, 2017

CI: Star-shaped subqueries with no 
instantiations or filter clauses 

CII: Star-shaped subqueries with no 
instantiations or filter clauses, and defined 
over an RDF class implemented by joining 
several relational tables in a data lake 

CIII: Star-shaped subqueries with 
instanstiations in object variables

 CIV:  Star-shaped subqueries with 
instantiations or filter clauses, and defined 
over an RDF class implemented by joining 
several relational tables in a data lake 

Experimental Configuration Types of Subqueries
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Goal: Evaluate the impact of different subqueries--star-shaped groups 
(SSQs)-- on the performance of a query engine.

Exp I: Impact of Star-shaped Groups 

CI

CI
CI

CI

CII
CII

CIV CIV

CIII CIV

CIV

CIV

RDB scans a relation or a set of relations,
while an RDF engine scans over all data. Thus, 
RDB engines outperform RDF engines

RDB only has indexes on primary keys, while 
an RDF engine has indexes over combinations 
of subject, predicate, and object. Thus, RDF 
engines outperform RDB engines
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Goal: Performance of Ontario engine over RDF data sources and the 
overhead introduced while considering heterogeneity

Exp II: Impact of Considering Heterogeneity

Ontario pays the price of considering heterogeneous data 
sources. Ontario outperforms both FedX and MULDER by 
generating efficient plans and using optimization rules tailored 
for RDF sources on the rest of the queries
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Goal: Performance of Ontario over heterogeneous sources, i.e., 
RDF and RDB

Exp III: Impact of Heterogeneity

Characteristics of the queries impact on the 
performance of the federated query engine.  Ontario 
is able to identify according to the data source 
implementations which is the most effective plan. 
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Goal: Performance of Ontario in producing continuous answers.

Exp IV: Measuring Continuous Efficiency

SQ3SQ1 SQ5

SQ6 SQ8 SQ9

Queries composed of SSQs in CI or CII Higher is Better!

Characteristics of the queries 
impact on the performance of 
the federated query engine.  
Ontario is able to identify 
according to the data source 
implementations which is the 
most effective plan. 
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Goal: Performance of Ontario in producing continuous answers.

Exp IV: Measuring Continuous Efficiency

Higher is Better!

Characteristics of the queries 
impact on the performance of 
the federated query engine.  
Ontario is able to identify 
according to the data source 
implementations which is the 
most effective plan. 

Queries composed of SSQs in CIII or CIV

SQ2 SQ4 SQ7 SQ10
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iasis:BioMarker

iasis:CYFRA-21-1

iasis:NSE

iasis:CEA

:d1

:d2

iasis:LungCancerMarker

iasis:II

iasis:50

iasis:III

iasis:70

a

a

a

iasis:associated

iasis:associated

a

iasis:stage

iasis:limit

iasis:stage

iasis:limit

:d3

:d4

iasis:associated

iasis:associated

iasis:CA-125

a

iasis:associated :d0 a

a

a

a

iasis:limit

Data 
Evolution
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Data Changes….

PREFIX iasis:<http://iasis/vocab/>
SELECT ?id  ?stage ?limit 
 WHERE {
  ?bm  a  iasis:LungCancerBiomarker .
  ?bm iasis:associated ?obs .
  ?bm iasis:limit ?limit .
  ?bm iasis:stage ?stage
  ?id iasis:associated ?bm .
   }

Lung Cancer Biomarkers?

iasis:CYFRA-21-1 iasis:50

iasis:NSE iasis:70

iasis:CYFRA-21-1 iasis:70

iasis:II

iasis:III

iasis:III

http://iasis/vocab/
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Data Changes….

PREFIX iasis:<http://iasis/vocab/>
SELECT distinct ?id  
 WHERE {
  ?bm  a  iasis:LungCancerBiomarker .
  ?id iasis:associated ?bm .
   }

Lung Cancer Biomarkers?

iasis:CYFRA-21-1

iasis:NSE

iasis:CEA

iasis:CA-125

http://iasis/vocab/
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Data and Knowledge Evolution

Data Integration 
System

CentralizedDistributed

Homogeneous

Heterogeneous

Data Integration 
System

Data Integration 
System

Wrapper Wrapper Wrapper

Data Integration 
System
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Hybrid Federated Query Engines

49

Source Selection & Query Decomposition

Hybrid Execution  Strategies 
 Crowd Microtask Manager 

Query Optimizer

SPARQL Query Q

M. Acosta, E. Simperl, F. Flöck, M.-E. Vidal: HARE: A Hybrid SPARQL Enhancing answer completeness of SPARQL queries via crowdsourcing. 
J. Web Sem. 45: 41-62 (2017)

Crowd

Source Selection & Query Decomposition

Query Optimizer

Execution Strategies  

SPARQL Query Q
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Hybrid Query Processing

50

PREFIX iasis:<http://iasis/vocab/>
SELECT ?id 
 WHERE {
 ?bm  a  iasis:LungCancerBiomarker .
  ?bm iasis:associated ?obs . 
  ?id iasis:associated ?bm .
    ?bm iasis:stage ?stage
}

Crowd

PREFIX iasis:<http://iasis/vocab/>
SELECT ?limit 
 WHERE {
?bm iasis:limit ?limit .
  ?bm iasis:stage ?stage
  ?id iasis:associated ?bm .

PREFIX iasis:<http://iasis/vocab/>
SELECT ?id  ?stage ?limit 
 WHERE {
  ?bm  a  iasis:LungCancerBiomarker .
  ?bm iasis:associated ?obs .
  ?bm iasis:limit ?limit .
  ?bm iasis:stage ?stage
  ?id iasis:associated ?bm .
   }

Lung Cancer Biomarkers?

http://iasis/vocab/
http://iasis/vocab/
http://iasis/vocab/
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HARE: A Hybrid Query Engine

51

Crowd

● Completeness model to estimate dataset 
completeness

● Crowd knowledge bases to capture crowd 
answers about missing data 

● Query engine that combines knowledge in 
knowledge bases and estimates from the 
completeness model to decompose and 
plan sub-query execution

● Microtask manager that exploits metadata 
to crowdsource subqueries as microtasks 
and update the knowledge bases 
according to the crowd answers

M. Acosta, E. Simperl, F. Flöck, M.-E. Vidal: HARE: A Hybrid SPARQL Enhancing answer completeness of SPARQL queries via crowdsourcing. 
J. Web Sem. 45: 41-62 (2017)

Source Selection & Query Decomposition

Hybrid Execution  Strategies 
 Crowd Microtask Manager 

Query Optimizer

SPARQL Query Q
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HARE Microtasks

Metadata is utilized by the 
microtask manager to 
automatically generate 
well-described crowd tasks 
Microtasks are submitted to  
crowdsourcing platforms, 
e.g., CrowdFlower or 
Mechanical Turk
Answers collected from the 
crowd are represented as 
structured data

52
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iasis:BioMarker

iasis:CYFRA-21-1

iasis:NSE

iasis:CEA

:d1

:d2

iasis:II
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iasis:stage
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a

iasis:associated :d0 a

a

a

a
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Data is curated...
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Experimental Study - Set Up

• Benchmark: 50 queries against DBpedia (v. 2014).
- Ten queries in five different knowledge domains:

 History, Life Sciences, Movies, Music, and Sports.

• Implementation details:
- HARE is implemented in Python 2.7.6,
- The crowd is reached via CrowdFlower.

• Crowdsourcing configuration:
- Four different RDF triples per task, 0.07 US$ per task.
- At least three judgments were collected per task.

• Total RDF triple patterns crowdsourced: 502
• Total answers collected from the crowd: 1,609

54
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Experimental Evaluation

55

Sports Music Life Sciences

Movies History
Crowdsourced answers and 
answers collected from DBpedia

HARE identifies subqueries with 
incomplete answers

Hybrid query processing enhances 
query answer completeness
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Experimental Evaluation

56

HARE is able to produce more than 
75% of the answers at the 12th minute 

Movies History

Sports Music Life Sciences
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Experimental Evaluation

57

Precision Recall

The crowd exhibits heterogeneous performance within domains. 
This supports the importance of HARE triple-based approach. 
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Applications 

http://project-iasis.eu/ https://www.bigmedilytics.eu/ https://qualichain-project.eu/

https://www.bigmedilytics.eu/
https://qualichain-project.eu/
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Lessons Learned

● Hybrid data integration systems 
allow for the adaptation of the 
system  to the conditions of the data 
sources 

● Hybrid data integration systems 
enable the integration of 
heterogeneous data sources

● Wisdom of the crowd can 
contribute the evolution of the 
knowledge

Data Integration 
System

Wrapper Wrapper Wrapper
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Required Solutions to Support Evolution 

Source Evolution

Selecting the sources 
according to their current 
conditions and availability

Querying Evolving Data

Environment 
Evolution

Executing  queries 
according to current 
conditions of the 
environment

Data Evolution
Considering the status of the 
data, e.g., completeness, during 
the execution of the query

Knowledge 
Evolution
Considering the evolution 
of the knowledge during 
the execution of the query

Knowledge 
Incompleteness
Considering that unknown 
facts may need to be 
predicted during query 
execution

1

2

3

4

5
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Knowledge Evolution
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Knowledge Evolution

Zamay TN, Zamay GS, Kolovskaya OS, et al. Current and Prospective Protein Biomarkers of Lung 
Cancer. Cancers. 2017;9(11):155. doi:10.3390/cancers9110155.
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How can Knowledge Evolution help?

Lung Cancer 
Tumor Marker 

Tests Patients

CYFRA21-1

CA-125

CEA

NSE

PREFIX iasis:<http://iasis/vocab/>
SELECT ?id ?date ?level  
 WHERE {
  ?bm  a  iasis:LungCancerBiomarker .
  ?bm iasis:associated ?obs .
  ?bm  iasis:limit ?limit .
  ?obs iasis:level ?level .
  ?obs iasis:date ?date .
  ?obs iasis:patient ?id .
  ?id iasis:diagnostic iasis:LungCancer .
          FILTER (?level > ?limit)
  }

Level of the Lung Cancer Biomarkers  in 
the patients with Lung Cancer? 

http://iasis/vocab/
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How can Knowledge Evolution help?

Lung Cancer 
Tumor Marker 

Tests Patients

CYFRA21-1

CA-125

CEA

NSE

PREFIX iasis:<http://iasis/vocab/>
SELECT ?id ?date ?level  
 WHERE {
  ?bm  a  iasis:LungCancerBiomarker .
  ?bm iasis:associated ?obs .
  ?bm  iasis:limit ?limit .
  ?obs iasis:level ?level .
  ?obs iasis:date ?date .
  ?obs iasis:patient ?id .
  ?id iasis:diagnostic iasis:LungCancer .
          FILTER (?level > ?limit)
  }

Level of the Lung Cancer Biomarkers  in 
the patients with Lung Cancer?

CEA

CYFRA21-1

NSE

http://iasis/vocab/
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How can Knowledge Evolution help?

Lung Cancer 
Tumor Marker 

Tests Patients

CYFRA21-1

CA-125

CEA

NSE

PREFIX iasis:<http://iasis/vocab/>
SELECT ?id ?date ?level  
 WHERE {
  ?bm  a  iasis:LungCancerBiomarker .
  ?bm iasis:associated ?obs .
  ?bm  iasis:limit ?limit .
  ?obs iasis:level ?level .
  ?obs iasis:date ?date .
  ?obs iasis:patient ?id .
  ?id iasis:diagnostic iasis:LungCancer .
          FILTER (?level > ?limit)
  }

Level of the Lung Cancer Biomarkers  in 
the patients with Lung Cancer?

EMPTY

http://iasis/vocab/
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Future Hybrid Federated Query Engines

Source Selection & Query Decomposition

Hybrid Execution  Strategies 
  Microtask Manager for Experts

Query Optimizer

SPARQL Query Q

Experts

Source Selection & Query Decomposition

Hybrid Execution  Strategies 
 Crowd Microtask Manager 

Query Optimizer

SPARQL Query Q

Crowd
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Biomarkers associated with Brain Metastasis

● Ki-67 expression
● low caspase-3 expression
● high vascular endothelial growth factor C expression, 

and low E-cadherin expression

Knowledge Completeness Evolution
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Biomarkers associated with Brain Metastasis

● Ki-67 expression
● low caspase-3 expression
● high vascular endothelial growth factor C expression, 

and low E-cadherin expression

Knowledge Completeness Evolution

Prediction methods to determine “similar 
cancers” associated with the same biomarkers

● Non-small cell lung cancer (NSCLC)
● Breast cancer 

Prediction Process
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Examples of Predictions….

Prediction Task Goal

Drug-Drug Interactions Adverse Drug Events

Drug Side-Effect Interactions Adverse Drug Reactions

Drug-Target Interactions Drug Effectiveness 

Disease Biomarkers Disease Early Detection

Disease Mutations Disease Early Detection and Drug Effectiveness 
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Future Hybrid Federated Engines

Source Selection & Query Decomposition

Hybrid Execution  Strategies 
  Microtask Manager for Experts

Query Optimizer

SPARQL Query Q

Experts

Source Selection & Query Decomposition

Hybrid Execution  Strategies 
 Crowd Microtask Manager  and 

Knowledge Discovery

Query Optimizer

SPARQL Query Q

Crowd
& Experts
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Data Integration Systems

Data Integration 
System

CentralizedDistributed

Homogeneous

Heterogeneous

Data Integration 
System

Data Integration 
System

Wrapper Wrapper Wrapper

Data Integration 
System

Existing Approaches have focused on adaptive techniques to 
support SPARQL Query Processing over RDF Data Sources
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Data Integration Systems

Data Integration 
System

CentralizedDistributed

Homogeneous

Heterogeneous

Data Integration 
System

Data Integration 
System

Wrapper Wrapper Wrapper

Data Integration 
System

Future Approaches require  to  be  focused  on techniques to 
support data and knowledge evolution of RDF Data Sources
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Future Hybrid Query Engines

Data Curation

Crowd based techniques able 
to exploit “public domain” 
knowledge to complete RDF data 
sources.

3

RDF Data Sources

Adaptive query processing 
techniques able to adjust query 
execution schedulers to current 
conditions of the data sources.

4

Knowledge Prediction

Knowledge discovery 
techniques able to  “predict 
unknown  facts” to complete 
RDF data sources..

1
Knowledge Curation

Crowd based techniques able 
to exploit “specialized  
knowledge” to complete RDF 
data sources.

2
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